Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Transl Endocrinol ; 35: 100333, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38449772

ABSTRACT

Objective: Systematically review evidence on using GLP-1RAs for reducing BEB in BED and BN. Methods: Comprehensive literature search (PubMed and Google Scholar) conducted for studies evaluating GLP-1Ras for BEB. Extracted data on study characteristics, efficacy, and safety. Results: Studies show that GLP-1RAs (liraglutide and dulaglutide) reduce BE frequency and comorbidities in addition to favorable psychiatric side effect profile compared to current options. However, large-scale, blinded placebo-controlled trials are lacking. Conclusion: Early findings suggest promising effects of GLP-1RAs on BEB. However, rigorous clinical trials are needed to firmly establish efficacy, dosing, safety, and comparative effectiveness before considering GLP-1RAs a viable novel approach.

2.
JCI Insight ; 8(17)2023 09 08.
Article in English | MEDLINE | ID: mdl-37490334

ABSTRACT

X-linked hypophosphatemia (XLH) is characterized by high serum fibroblast growth factor 23 (FGF23) levels, resulting in impaired 1,25-dihydroxyvitamin D3 (1,25D) production. Adults with XLH develop a painful mineralization of the tendon-bone attachment site (enthesis), called enthesopathy. Treatment of mice with XLH (Hyp) with 1,25D or an anti-FGF23 Ab, both of which increase 1,25D signaling, prevents enthesopathy. Therefore, we undertook studies to determine a role for impaired 1,25D action in enthesopathy development. Entheses from mice lacking vitamin D 1α-hydroxylase (Cyp27b1) (C-/-) had a similar enthesopathy to Hyp mice, whereas deletion of Fgf23 in Hyp mice prevented enthesopathy, and deletion of both Cyp27b1 and Fgf23 in mice resulted in enthesopathy, demonstrating that the impaired 1,25D action due to high FGF23 levels underlies XLH enthesopathy development. Like Hyp mice, enthesopathy in C-/- mice was observed by P14 and was prevented, but not reversed, with 1,25D therapy. Deletion of the vitamin D receptor in scleraxis-expressing cells resulted in enthesopathy, indicating that 1,25D acted directly on enthesis cells to regulate enthesopathy development. These results show that 1,25D signaling was necessary for normal postnatal enthesis maturation and played a role in XLH enthesopathy development. Optimizing 1,25D replacement in pediatric patients with XLH is necessary to prevent enthesopathy.


Subject(s)
Enthesopathy , Familial Hypophosphatemic Rickets , Mice , Animals , Familial Hypophosphatemic Rickets/genetics , Calcitriol , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Fibroblast Growth Factors , Vitamin D
SELECTION OF CITATIONS
SEARCH DETAIL
...